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ABSTRACT
; | g3
The premature longitudinal cracking of segmented columns has
been identified as one of the most serious problems in the design of pre-
stressed segmented ceramic members. Circumstantial evidence is pre-
sented to support the contention that large transverse tensile stresses

are developed because of the non-flatness of segment interfaces.

Two first order models are developed for predicting the nonlinear
response of prestressed segmented beams. The validity of the models
is demonstrated experimentally and many of the characteristics of seg-
mented beams are explored. The strength of prestressed monolithic
brittle beams is formulated in terms of reliability and a specific example
is treated in which the prestress leads to a twenty-five fold increase in

strength when compared to a conventional beam of equal weight and
I\

reliability. /W
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PRESTRESSED MONOLIJTHIC AND SEGMENTED BRITTLE STRUCTURES

L. INTRODUCTION AND PROGRAM SUMMARY

A, Objectives

The principal aim of the aerospace structural designer is to
provide structures of minimum weight and volume. To accomplish this
objective in an environment of high temperature and severe oxidation, he
is being forced more and more to consider the family of brittle materials
composed of cermets, ceramics and refractory metals. In addition to
the remarkable high temperature properties of such materials, one finds
exceptional compressive strengths and abrasion resistance. Furthermore,
most of the materials occur abundantly in nature. Notwithstanding these
attractive features, many of these materials are produced only in small
sizes, their costs are usually very high, some are toxic, often large
residual stresses are unavoidable, and all too frequently the mechanical
properties exhibit enormous variability. Saving the worst for last, their
greatest shortcoming from the structural designers point of view is brittle-

ness.

The overall objective of this program is to study the techniques
of prestressing and segmenting as one possible approach to the problems
of brittleness and small section size. Specifically, it is the goal of this
program to develop an analytical capability for predicting the behavior of

prestressed monolithic and segmented brittle structures.

In this first phase of the program, three fundamental problems
have been considered. The first of these deals with the development of
transverse tensile stress in a segmented column under axial compressive
loading. The second, involves the prediction of the non-linear response
of a prestressed segmented beam. And the last, concerns itself with the

benefits which occur from prestressing a monolithic brittle element.



B. Summary of Current Progress

l. Transverse Cracking Phenomenon

éracking in a direction transverse to a uniaxial compressive
load was first recognized by F. R. Shanley to be a major deterrent to the
application of prestressing to segmented members. In 1957, the authors
conducted a study of minimum weight deflection design for prestressed
segmented beams in which the roughness of the segment interfaces played
a predominant role. Based on this background, it was hypothesized that
the interface roughness causes transverse cracking. To support this view

the following evidence was established.

1. The slope of the compressive stress-strain diagram of a
segmented column increases with increasing stress. This is caused by the
fact that the contact area increases with axial load and hence the stiffness

correspondingly increases.
2. Column strength increases with increasing flatness.

3. Specimens increase in compressive strength with decreasing

cross-sectional area.

4. Internal transverse crack lenses can be observed in glass

columns (2in x 4 in x 1/2in).

5. Photoelastic and two-dimensional elasticity results indicate
that an uneven load distribution on a segment will cause internal tensile

stresses in directions parallel to the interfaces.

6. Triaxial compressive tests indicate a very substantial

increase in axial strength when a lateral biaxial prestress is imposed.

2. Load-Deflection Characteristics of Prestressed Segmented Beams

Two quite different mathematical models were developed to
describe the nonlinear behavior of a prestressed segmented beam. Identical
closed form results were obtained for these models using rectangular
beams in which the tendon stiffness was neglected. The complication of
tendon stiffness gives rise to a computer analysis which can be extended to

beams of complicated cross-section.




The load-deflection curve for a prestressed segmented beam
has an initial linear region followed by a non-linear region of continuously
decreasing slope. With respect to the non-linear region, it has been
possible to demonstrate excellent agreement between the bending theory

and carefully performed bending tests.

In the linear range, the prediction of the slope is equivalent
to the problem of relating the effective area of a segmented column to the
effective moment of inertia of the corresponding beam. The statistical
nature of this problem was not recognized in sufficient time to properly

deal with it during the first phase of this program.

3. Strength of Prestressed Monolithic Brittle Beams

Applying Weibull's statistical fracture theory, it was possible
to theoretically establish for simple beams a relationship among prestress
level, reliability, loading, member geometry, and material properties.

A specific example is treated in which the prestress results in a twenty-
five fold increase in capacity over a conventional beam of equal weight

and reliability.




II. STATE OF THE PRESTRESSING ART

Prestressing is a technique whereby permanent stresses are
introduced into a structure prior to the application of its service loads.
The resulting initial state of stress can be made to have a profound
influence upon the strength and stiffness of the structure. A brief system-
atic treatment of the general characteristics of prestressing may be found

1/

in Roark—

A. Prestressed Concrete

The application of prestressing principles to concrete - that is,
of applying artificial compression to negate any tensile stresses developed
in the loaded structure- was conceived many years ago and attempts were
made to apply them as early as the 1880's. These first attempts were
frustrated by the presence of creep in the concrete and in the mild steel
tendons used by the early investigators. Their prestressed members
eventually developed tension cracks even though they behaved according

to theory when the prestress was first applied.

Eugene Freyssinet was apparently the first man to suggest a
remedy to this problem and in 1928 he took out a French patent for con-
crete prestressed with high strength wire. The ultimate strength of this
wire is sufficiently high that creep losses which occur subsequent to the
prestressing represent only a small per cent of the original prestress
level. Consequently, after long periods of time the tension under load
can still be eliminated or reduced to a specified small value. It is im-
portant to point out that all of the modern design methods deal explicitly

with the creep problem.

Over the last 35 years, the development of prestressed concrete
has rapidly gained ground. Applications to beams, trusses, plates,and
shells are almost commonplace. Indicative of the high level of develop-
ment enjoyed by prestressed concrete is the design, using this material,
of the wings of a special guided missile ordered in 1947 by the French Air
Ministry.g/ It was verified that the stiffness of the resulting wing structure

was about 50 per cent higher than ones built of steel or light alloy. The
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weight turned out to be 12 per cent of the total weight of the craft (which
was considered quite reasonable) and the ultimate strength was even
higher than they forecasted. A more recent unusual application of pre-
stressing was used in the Philips Pavilion at Brussels.i Here, a torsional
prestress was introduced into the main ribs of the pavilion by the technique
illustrated in Fig. 1. A similar application was proposed by Shaniey‘-%-/in

connection with high performance ceramic shell structures.

Prestressing Cable
Fig. 1 TORSIONAL PRESTRESSING

B. Prestressed and Segmented Concrete

Prestressed and segmented concrete structures appear frequently
in practice; for example, the Gladesville Bridge in Sydney, Australia
furnishes a dramatic example of 1000-ft arch span assembled with precast
segments. This bridge and a number of other long-span segmented con-
crete bridges are discussed in a recent paper by Gerwick.é/ In this
country, use of concrete blocks in beams and panels has been extensively
exploited by the firms of Bryan and Dozier of Nashville, Tennessee, and
the Nashville Breeko Block Company. The basic idea of this construction

is illustrated in Fig. 2.

Mortar Joints Between All Blocks /—Strand

[ |

. End Runner  Depressor Runner  Depressor Sock tA
Beoaring ocke
Plate Block Block Block Block Block

Fig. 2 TYPICAL PRESTRESSED CONCRETE BLOCK CONSTRUCTION

\



C. Prestressed Metallic Structures

Prestressing of metal structures was proposed in 1947 by the late
Gustave Magnel. He presented a method of utilfzing high-strength steel
in the lower chord of a truss without the accompanying large deformations.é
In 1949, Dr, Ing. F. Dischinger, Professor at the Technical University of
Berlin, proposed a method of prestressing steel girders with concrete
slabs solidly attached to their top flanges. In England, a number of old
steel bridge trusses have been reinforced by prestressing their lower chords.
To achieve greater lateral stiffness in a Canadian skyscraper, prestressed
X-bracing was used in various bays. Recently, a practical method was pro-
posed for effecting substantial weight savings in rolled sections by using a
prestressed Queen Post arrangement.-?- In 1960, the Iowa State Highway
Commission began the development of a method of prestressing steel beams
which-involves loading or deflecting a mild steel beam and welding on a
high strength steel cover plate while the beam is deformed. The load is

then removed leaving a beam with an attractive strength to weight ratio.

D. Prestressed and Segmented Ceramics

Applications of prestressing and segmenting methods to ceramic
materials appear infrequently. Scattered examples can be found where the
techniques are used for nonstructural purposes; the Kennametal Company
shrink fits steel jackets over carbide tools, and the Norton Company threads
short boron carbide cylinders over a central steel rod for use as reactor
control elements. The idea of using prestressed segmented ceramic
materials in high performance structures was motivated in part by a report
prepared by the Ohio State University Research Foundationg—/ which indi-
cated that great possibilities could be derived from an all-ceramic wing
design if means could be found to circumvent the poor tensile properties of
ceramics. The possibility of using prestressing techniques for this pur-
pose was investigated by ‘Shanley in a report prepared for the Rand Corpora-

tion?’ in 1951.

A number of investigations of prestressed ceramics have been con-

ducted by the staff of the University of California under the direction of




Shanley.4’-—1—9/ Several types of civil engineering structures were studied
including a 4-ft cantilever beam made from four ceramic building blocks
and a number of wall panels and slabs also constructed from ceramic
blocks., In all of these investigations, very low stress levels were achieved

and the results were primarily of a feasibility nature.

For aircraft application, the four high-alumina porcelain wing
structures shown in Fig., 3 were fabricated and tested. In the first three
of these wings, failure occurred while the prestressing loads were being
applied. The failures were quite interesting in that the initial cracks were
formed parallel to the wing axis, suggesting the presence of circumferential
tension. Nadai, in discussing compression members of porcelain, mentions

11/

This phenomenon is attributed by him to a wedging action of the column

that failure often occurs in the form of longitudinal cleavage cracks.

caused by frictional restraint of the compression plates against radial expan-
sion of the column., Further explanation is seen in wedging action produced
by filler material, most noticeably lead, penetrating the crevices of the
material and thus initiating such cracks. In the test of ceramic wing No. IV,
an average prestress of 2000 psi was applied. The structure was then
uniformly loaded to failure, which occurred at a maximum bending stress

of 1590 psi. Tests of the individual wing sections showed a compression
strength of 12, 000 psi, and tests of smaller samples developed compression
strengths averaging 40, 000 psi. It should be noted that compressive

strengths of 400, 000 psi are not uncommon in ceramics.

A series of exploratory experiments on prestressed segmented
titanium carbide elements were conducted by Barnettl—z-/as part of a
minimum weight investigation of rocket launcher structures. One of the
bending members studied in this program is shown in Fig. 4. The member
sustained bending stresses of 8000 psi and prestressing levels as high as
120, 000 psi without signs of distress. No attempt was made to attain the
ultimate bending strength since stiffness and not strength was the main

concern of this study.

Results of the bending tests are shown in Fig. 5 where we observe
that the initial stiffness increases with increasing prestress. Titanium

carbide has a straight-line compressive stress-strain curve up to about
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500, 000 psi; consequently, the segmenting has the effect of lowering the
stiffness. This effect also appeared in the direct compression test of the
beam segments. A typical compressive stress-strain diagram is shown in
Fig. 6. The observed curvilinearity is caused by the fact that the segment
interfaces are not flat, and consequently, the contact area, and hence
stiffness, increases monotonically with increasing axial load. To check
this premise and to determine means for dealing with it, an investigation
was conducted which involved lapping the interfaces, using shims of
various materials between the segments, and buttering the interfaces with
hydrocal. The lapping and the hydrocal gave rise to considerable improve-
ment--the shims were not effective. It is of some interest that Shanley
reported considerable difficulty with the gasket materials he used between

the segments of the first three wings.

A remarkably complete account of the characteristics of pre-
stressed segmented brittle materials can be found in a brief article by

A. J. Harris. 1—3/

11
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III. TRANSVERSE CRACKING OF SEGMENTED COLUMNS

In summarizing his work on ceramic wings, Shanley identifies
the premature cracking of the ceramic elements in the spanwise direction
as the most serious problem in the design of prestressed ceramics.

For this reason, a portion of this program has been directed toward

this problem.

A. Interface Roughness Hypothesis

Because the roughness of segment interfaces played such a
significant role in the stiffness experiments with titanium carbide, it
seemed reasonable to adopt this premise as a first hypothesis for explain-
ing the transverse cracking of segmented elements under axial com-
pressive loads. Indeed, the studies described in this chapter appear to

support this position.

B. Support of Hypothesis

For reasons of cost, availability, transparency, and extreme
brittleness, plate glass was chosen as the model material for the experi-
mental phases of this program. The glass was received in the form of
blocks with nominal dimensions of 2 x 4 x 1/2 inches where the eight

square inch surfaces were 5 to 7 lightbands out of flat.

The first test performed was a simple determination of the
compressive stress-strain diagram of the 2 x 4 x 1/2 inch glass blocks
shown in Fig. 7. The test was terminated at about 10, 000 psi when
spalling was observed on the periphery of the glass segments. Examination
of the glass segments subsequent to the test revealed that all of the blocks
contained lens-like cracks. The normals to these lenses were perpendi-
cular to the axis of loading and their centers were located near the

central plane of the segments. The cracks did not penetrate to the surfaces.

13
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Fig.7 COMPRESSOMETER FOR 2"x 4" SEGMENTED GLASS
COLUMN



Figure 8 is an artists rendering of a typical crack lens. We could not

obtain photographs which gave a satisfactory prospective.

1. Lateral Tensile Stresses

In a segmented column, the roughness of the segments gives
rise to a nonuniform distribution of axial stresses across their inter-
faces. This in turn causes tensile stresses to be developed in the
transverse direction to the loading. This principle has been used as a
indirect method of obtaining the tensile strength of brittle materials.
The method has been described by Berenbaum and Brodie 14 who con-
ducted a two-dimensional photoelastic analysis of the nonuniformly
loaded block shown in Fig. 9a. The results shown in Fig. 9b indicate
that the transverse stress under the load assumes a maximum tensile
value at the center of the block and becomes compressive at the top
and bottom surfaces. This corresponds to our observations concerning

the internal crack lenses which did not penetrate to the surfaces.

Additional insight into the nature of the transverse tensile stresses
can be gained by studying the stress distribution in the strip shown in
Fig. 10. The intensity of the vertical forces acting on the t'op and

bottom surfaces is A(l + sin m;x ) where the interger m represents

the number of waves and L is the strip length. Referring to Timoshenko

and Goodier, 1—5/ the stress distribution becomes

= pp (acosha - sinh a) cosh ay - ay sinh ay sinh a

Tx sinh 2a + 2a sin ax (1)
¢ = 24 {2 cosha + sinh a) cosh ay - ay sinh @y sinh a sinax - A (2)
y sinh 2a + 2a

15




Fig.8 TRANSVERSE INTERNAL CRACK RESULTING FROM
DIRECT COMPRESSION




31q0¥8E "1 ANV WNVEN3Y3E 'Y H3L4V

1S31 NOISN3L 1O3YHIANI

¥90|g PepooT Ajwuoyun -uop (D)

0]
q
. d
$S9J)G 9SJ9ASUOJ]Y (q)
" P ¥ \&
- .

GL0 g m“

G0 _
GLE0 . £
G20 ‘0
§2/0=g a

Xg | | %,
h.b
_
v V)

6614

sjun
Ol=D=g¥ PuD Syiun OG Jo pooj
pai|ddp upb woJy ynsas sassalis "I ON

Ssayg |DIXY ()

kk O 2- b- 9 8 OF 2 b

ok

6L 0=3

0

17




LI AN

TN

igJO STRIP SUBJECTED TO A NON-UNIFORM AXIAL LOAD

18

2¢




= . 2A a cosh a sinh @y - @y cosh @y sinh a
Txy sihh2a + 2a

cos ax (3)

where a = mltc and a = Lij_ and c is half the strip depth.

Specializing these formulas to give the maximum stresses in the middle

plane (y = 0, sin@x = 1), the ratio of transverse to axial stress becomes

X . a cosh a ~ sinh a (4)
U’y (1 + cosh a) (a + sinh a)

This relationship has been plotted in Fig. 11 where we observe that
somewhere between very few waves and very many waves there exists
a ""'worst'' condition. We observe further that tensile failures can occur
if the tensile strength of the strip material is less than 15.3 per cent

of its compressive strength. For most ceramic materials the tensile

strength is less than 10 per cent of their compressive strength.

There are two important similarities between the photoelastic and
the elasticity solutions considered. Both show the existence of transverse
tensile stresses of the same order of magnitude as the axial stresses, and
both show the transverse stresses to be maximum in the middle plane and
compressive near the top and bottom surfaces. Equation 1 shows thato

is negative at y =+ c.

2. Flatter Specimens and Smaller Specimens

Examination of the interfaces of the 2 x 4 x 1/2 inch glass blocks
with optical flats seemed to indicate that the surfaces contained a relatively
small number of waves. The amplitudes of these waves can be reduced
by lapping which, according to our roughness hypothesis, should increase
the ultimate compressive strength of a segmented column. Further, if

the larger amplitude waves are the more influential in controlling surface

19
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contact, it follows that smaller specimens should be stronger than larger
ones. This observation is based on the obvious and simple result from
extreme value statistics that the maximum amplitudes are smaller in

small specimens.

The ultimate compressive strengths of segmented columns were
determined for two glass sizes and two levels of interface roughness for
each size. Some of the 2x4x1/2 inch "as received'' glass blocks (5-7
lightbands) were lapped to a flatness of 2-3 lightbands. A portion of the
segments from each of the resulting groups were then cut to produce
1x2x1/2 inch segments. The columns corresponding to the four types of
segments were slowly loaded in compression until catastrophic failure
occurred and the maximum nominal stress was recorded. These ultimate
compressive strengths are given in Table 1. Each value listed represents
the average strength of three five-segment columns. It can be seen that
the strength increases as the segments become flatter and as they become

smaller.

Although the tests appear to support the roughness hypothesis, it
should be pointed out that there are other possible explanations for the
observed behavior. First, the small sample sizes used may not lead to
a valid statistical inference concerning the average values. Second, if a
weakest link mechanism controls the strength of glass in compression, the
observed size effect would also appear in monolithic columns. Lastly,
the cross-sectional area to circumference ratio of the larger segments is
greater than that of the smaller segments; consequently, a "skin strength"

theory could produce the observed size effect.

Table 1 ULTIMATE COMPRESSIVE STRENGTHS OF SEGMENTED
GLASS COLUMNS

Ultimate Compressive Stress

Nominal Size

'""As Received' 5-7 Lightbands | '""Lapped'' 2-3 Lightbands

2x4x1/2in. 52, 450 psi 53, 445 psi
1x2x1/2 in. 56, 966 psi 66, 533 psi

2l



3. Tri-Axial Compression Tests

If, as we contend, premature failure of a segmented column is
caused by the presence of transverse tensile stresses, dramatic increases
in axial compressive strength can be anticipated through the application of
a lateral compressive prestress. In the tests described in this section, it
was pragmatic to apply the lateral prestress by means of a hydrostatic
pressure. In real members the lateral prestress may be achieved by tension
wrapping the member with high strength tendons or perhaps shrink f{itting

a jacket about them,

The tri-axial compression setup shown in Fig. 12 was used to deter-
mine the ultimate compressive strengths of segmented column specimens
similar to that illustrated in Fig. 13. The apparatus used subjected the
columns to an axial force in addition to a hydrostatic pressure. The test
results are summarized in Table 2 where we observe that the increase in
axial failure stress is greater than the lateral stress. When interpreting
the test results, one must bear in mind that only the axial force can produce

transverse tensile stresses since the fluid penetrates between the segments.

Table 2

COMPRESSION EXPERIMENTS ON FOUR INCH SEGMENTED GLASS
PLATE COLUMNS IN A HYDROSTATIC PRESSURE ENVIRONMENT

Test Segment | Mean Hydrostatic Axial Stress at
No. Size Pressure (psi) Environment | Failure (psi)

1 2"x2" 0 Air. 29, 600

2 "%l 0 Air 30, 400

3 1"x1" 10, 000 Mil-H-.5606A

x’ ! Hydraulic 58, 400
4 1'% 1" 20, 000 0il 72, 200
' (Red)

D. Design Implications of the Interface Problem

Using the setup shown in Fig. 7, the compression stress-strain
curves were determined for a number of segmented columns under several

different circumstances. Three such curves are shown in Fig. 14 where
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Fig.13 TYPICAL TRI-AXIAL SPECIMEN
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Fig.14 EFFECT OF SIZE ON THE COMPRESSIVE STRESS-
STRAIN DIAGRAM OF SEGMENTED GLASS COLUMNS
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we observe the general characteristic of a monotonically increasing slope'
or stiffness. The slope of each of the curves approaches the modulus of
elasticity of monolithic glass; however, the lapped specimen has the
greatest stiffness at the low stress levels. This size effect precludes the
possibility of describing a segmented linear material by an equivalent non-
linear material. Because of the monotonically increasing stiffness, the
possibility exists that a segmented column can be stable at high loads and
unstable at a lower one. This problem can be circumvented by prestress-

ing the column, but not without a weight penalty.

One further complication is found when the reproducibility of a
stress-strain curve is examined. As long as a column‘is never completely
unloaded, the stress-strain curve is almost perfectly reproducible in the

sense that continuous loading and unloading produces stress-strain

coordinates which fall on the same curve. However, if the relative positions

of the segments are disturbed after loading and unloading, the subsequent

stress-strain curve will be different and sometimes quite different.
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1Iv. LOAD-DEFLECTION CHARACTERISTICS OF
PRESTRESSED SEGMENTED BEAMS

This chapter considers the problem of predicting the load-
deflection relationship of a prestressed segmented bending member from
a knowledge of the properties of its component materials. Specifically,
an attempt is made to relate bending behavior to simple column behavior.
The approach used to accomplish this objective consists of establishing a
first order analytical model of bending behavior and studying how closely
the proposed assumptions describe the actual conditions found in real seg-

mented beams.

A, Mathematical Models

Two distinct mathematical models have been developed to account
for the segment separation which occurs during the bending of a segmented
beam. The first of these, the incremental model shown in Fig. 15a, con-
siders the beam at some instant during the loading process. At this instant
the beam is in equilibrium with the applied moment M(x), and in general,
cracks will have penetrated into the beam section for some distance along
the segment interfaces. The relationship between crack penetration and
the bending moment at a station along the beam is established in a straight-
forward manner from moment equilibrium. If an additional infinitesimal
moment 6M(x) is added to this beam, the resulting infinitesimal response
can be calculated as the linear response of the uncracked beam section.

The total live load deflection is then found by summing all such infinitesimal

responses which occur between M(x) = 0 and M(x) = M(x) final®

In the second model, the equilibrium model shown in Fig. 15b,
the beam is considered in its final loading state. The portion of the beam
which is uncracked is considered to be an elastic beam under the external
loading M(x) and the internal loading caused by the prestressing. Since
the deflection of an elastic beam can be uniquely determined for every
loading, the deflection of the entire beam can be viewed as the deflection

of the uncracked portion.
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1. General Formulation of the Bending Models (Zero Stiffness Tendons)

Formulation of the incremental and equilibrium models will pro-
ceed under the following assumptions: (1) the segment material is linearly
elastic up to its ultimate compressive strength, (2) the interfaces are
absolutely flat, (3) the tendon stiffness is zero (negligible compared to the
segments), (4) the tendons are constrained to deflect with the segments
(this eliminates any beam-column action), (5) the number of segments is
infinite, and (6) the resultant prestressing force is located within the section
kern (this precludes the existence of tensile bending stresses and hence

cracking under zero external load).

a) Crack Penetration-Moment Relationship

If the bending moment at a section of a prestressed segmented
beam is continuously increased from zero, we experience conventional
elastic behavior until a net tensile stress becomes incipient in say the
bottom fibers. As the moment is increased further, cracks are formed
between the segments (segment separation) at the bottom of the section.
That part of the cross-section which is not penetrated by cracks remains
linearly elastic. The stresses in this portion of the section must be
linearly distributed with a zero tensile stress in the bottom fibers and
compressive stresses in the top fibers. These conditions yield the stress

block shown in Fig. 16a.

Specializing to the rectangular beam (Fig. 16b), the various
properties of a cracked section may be written as functions of the crack

penetration f.

AC =b(d - f) (5)
3

I = b(d - f) (6)

¢ 12

n, = (d - £)/2 (7)

where Ac’ Ic’ and n_are respectively the area, moment of inertia, and
distance from the centroid to the outer fiber of the unseparated portion of

a crack beam section. The width and depth of the beam are b and d. The
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condition of zero stress in the bottom fiber gives us a relation between

the bending moment M and the penetration. Hence,

o =0 = t [M‘F(e+f/2)](§i£)
bot b(d-f) a0’ ®)
12
or
o 5 -3e (9)

where F is the resultant prestressing force or tendon force and e is its
eccentricity. In rectangular beams where negative moments do not occur,
one criterion defining the uncracked regions of the span is simply f £ 0.

Using Eq. 6, and 9, the moment of inertia of an uncracked cross-section

becomes
I =all- M)’ (10)
3
9b d 1
a = —I(et+—5) ;s ——
4 2 F(e+—C21-) (11)

We observe that I approaches zero as M approaches 1/8 =F(e + % ).
Consequently, for the case of zero stiffness tendons both the deflections

and the stresses become unbounded for a finite value of the loading.

b) Incremental Model

Consider a prestressed segmented beam subjected to a dis-

tribution of non-negative bending moments of the form

M = Pg (x) (12)

where P is a load intensity parameter and x is a coordinate along the
span. The moment required to crack this beam, Mc’ can be found by

setting f = 0 in Eq. 9 , thus,

M_ = Fle +3) (13)
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Che load parameter associated with the appearance of the first crack in

he beam is given by

P =M /g (x) (14)

C C max

Che corresponding deflections AC can be found by conventional methods;

or example,
[ch(x) . Fe] m

A 7 EI dx (15)
S

’here E is the modulus of elasticity of the segments, I is the principal
noment of inertia of the uncracked beam section, m is the virtual moment
esulting from a unit load placed at the point and in the direction of the
esired deflection and S represents the portions of the span which are
ncracked (here, the entire span). When the beam is in equilibrium under
loading P which is greater than Pc’ the beam span is divided into the
racked portions Sc defined by M(x)),Mc and uncracked portions S
efined by M(x) ¢ Mc' If the loading on this beam is increased by the

afinitesimal load dP, the resulting infinitesimal response day is given by

_ m g(x) dx m g(x) dx
S S
c

'he total deflection A for loads greater than Pc can be found by summing

1e infinitesimal responses and adding the cracking deflection A . Hence,

P

P d
F(e+t )
- m g{x) dx P+ J J m%(x) dx ,p 2z
8% +f j E d c . PC\<P< gmaxbd
P_S(P) P_ sC(P)

(17)
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also, [ ]
A = = ng})'Fe dx PSP, (18)
c) Example: Terminal Couples by Incremental Method

Specializing Eq. 15, 17 and 18 to the case of a rectangular beam

under terminal couples C we obtain for the central deflection

L/Z( / C /2
C -Fe) (x/2)
A =2J cEi)x dX+o+J of (x/2) - 1 dx dP
0 Ea(l-BC)
5 C. O (17a)
L d d
= Fle + JXCLKF (e + =)
16EgB(1-8 C)? 3 2
L/2
A =2 J (x/2) (C-Fe) g,
0 (18a)
_ 3(C-Fe)L® _ (C-Fe)L® CeF (a4 ) = G
2Ebd> 8Eql1- gC)° 8 e

P was replaced by C, and g(x) ¥ 1. The value of C
The maximum

where m = x/Z,
is limited by the compressive stremgth of the material T

compressive stress in the cracked section is given by

2
- 2F B
0—top ~  3b (1-4C) (19)

From this we find the limiting moment to be

+ ZF] (20)

We note that when c*%_ = F(.%. + e ) both the deflection Aand the

maximum stress o-top become infinite.

The load deflection diagram and the crack penetration diagram

are shown in Fig. 17 for a rectangular titanium-carbide beam with the

following characteristics:

33




sdi} 091 ;32404 9NISS3YLSI¥d
SWVYHOVIQ NOILVHL3INId ¥OVHD ANV NOIL1D31430 avo Li°Bid

(‘ul) uoyyos|jaQ D4UAD

9l vl el o] 8 9 v 4 0
| ) [ | | [ _ [ | I I
(ur) uoiyoijeUed ¥2D4D
b ¢ 2 ] 0 N
1 J gLl 2
juswow Buyo0iy_— A, 3. w
8
- osz 9
\ o
o sdiy-ul L9° 98I
~ 0o€ m juowop Buiyonip
=
0S¢
5
gL' 00t ~ N
sdiy-ul €6 .Nmn:h_o
15%00S = %0:04n(104 aAIss81dWO)
L

W09

‘E‘L

15401X09 =3 b

_..|
ri‘hr |

ool

o
N

(sdiy -u1) sa|dnod |oulwiId]

o)

o
o]
2]

oov

3




2 in,

4 in.

0.5 in.

60 x 106 psi
160 kips
-500, 000 psi

W H o A o
H

—

g
(o]

1}

d. Equilibrium Model

Returning to the beam treated in Section (b), we shall formulate
the deflection problem by considering the beam in equilibrium under its
final state of loading. If no cracks have formed in the beam, that is if

M(x)< Mc’ the deflection is identical to Eq. 18, i.e.,

i (M - Felm
A= EIL ’
S
On the other hand, when part of the span has been penetrated by cracks

dx M(x)\(MC - (21)

the deflection becomes

f
M-Fle+ =) m
A:J_(}\_"_:Ef;_e)r_n_dx +J[ — 21\13 dx , M < M<Fle + -5
S S¢ afll - BM) 22)

e. Example: Terminal Couples by Equilibrium Method

For the central deflection, Eq.- 22 specializes as follows:
L/2 ¢
[c -Fle+ 5] (x/2)
0+ 2

dx
A Eq(1-8C)°

>
)

(22a)
[c-Fle + L] 1.2 L2

8 Eq(1- gC)3 16 E af(1-BC)°

We observe that the two models produce identical results for terminal
bending, but that the equilibrium model is analytically much simplier. In
all of the cases studied, with zero stiffness or elastic tendons, both models

always produced identical load-deflection relationships.
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f. Example: Concentrated Load on a Simple or Cantilever Beam

The constant bending moment associated with terminal loading
suppresses, several of the complications which arise in the general loading
case. For example, a number of spanwise discontinuities appear in the
integrands of our two formulations. These occur at discontinuities in the form
or slope of the external bending moment diagram, at the point of application of
the virtual unit load, and at the stations separating the cracked and un-
cracked portions of the span. To illustrate how these discontinuities are
handled, the general deflection analysis of an end loaded cantilever is
formulated in Fig. 18 and 19 using the two models. Both formulations
lead to impressive algebraic problems which produce, nevertheless,
identical closed form solutions. Instead of presenting these results, we
shall describe the general solution for the deflection curve of a simply
supported beam subjected to a concentrated load placed anywhere in the
span. The solution for the cantilever is, of course, embedded in this

solution which is given in Fig. 20.

2. Simply Supported Beams with Elastic Tendons
(Equilibrium Method)

In general the tendon force will not remain constant as the
magnitude of the loading on the beam increases. This fact introduces
another complication into the mathematical description of the bending
behavior of prestressed segmented beams. In fact only the simplest of
loadings - terminal couples - is tractable without recourse to a computer.
The equilibrium method was chosen in this section because of its analytic
simplicity. Although it was also programmed for the computer, there is

a possibility that the incremental model is better suited for this purpose.

a. General Relationships

If the applied bending moment distribution, M(x), is represented

in the form of Eq. 12
M(x) = P g(x) (12)

where P is a load intensity parameter and x 1is a coordinate along the
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pan, then the tendon force F may be expressed as a function of P, i.e.

F = F(P)

(23)

'he initial tendon force or prestress, Fo , is defined when P = o, i.e.,

FO = F(o)

(24)

‘efine T to be the resultant moment acting about the ''neutral axis" of

1e uncracked portion of the cross section. Referring to Fig. 16, for

ectangular cross section,
T = M- Fle+ )

he crack penetration f becomes

M
f—O,fOI‘ F\<G+T

6T M d
d-T, for—F—>/e+T

=
il

hus the resultant moment may be further expressed as

T M - Fe ,for%—{e+%—

T

i1

'he section properties may be expressed as
A = A(M)

Ao= A(o) = bd

- - T
AC- b (d-f) = 6b—F—

I = I (M)
IO=I(0)
3
_  b(d-f)" _ T .3
I.= —17— =18b ()

or a simply supported beam, the deflection at x = xA

L

Tm
_ A
AR o8 dx

—é—[F(e+—g—)-M], for—héze+%

(25)

(26)

(27)

(28)

(29)

may be expressed as

(30)



where

*A
m, = (1 -—L—-)x , for o<x\<xA
(31)
m, = —L—A— (L-x) , for xASX<L
The slope at the left end is given by
L -
TmL
0
where
= =
and the slope at the right end is given by
L TmR
0
where
= X_
mp = (35)

Dividing the beam into its uncracked portions S, M/F\< e + d4/6, and its
cracked portion Sc , M/F>e + d/6, and utilizing Eq. 27 and 29, Eq. 30

may be expressed as

. J’ 3 J m  dx
A =gr— ) Tma™ Y mEE )2
o S SC
(36)
3 m _ (x) dx
~ 1 23 A
T EL J [M(x)-Fe] m (x) dx + CTb_EJ' 3 >
S Sc[ Fle+3-) - M(x)]
Similarly, Eq. 32 and 34 become
3 m, (x) dx
— 1 2F L
0, 51— I [M(x)—Fe] mL(X) dx + IBE S 5
o 4 5_[Fle + 5 - M)

(37)
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3 my(x) dx
1 2F R
$ 5. [Fle + 5= - MG
(38)

If M(x) is represented in the form of Eq.12, then

A = A(P)
(39)
A, = A (o)
0, = 0;(P)
(40)
FOeL
010 = 9plo) =- 2ET_
OR = QR(P)
FoeL (41)
o = Orlo) T TZET

If At and Et are respectively the cross sectional area and the
modulus of elasticity of the tendon, and if fL and fR represent respectively
the crack penetrations at the left and right ends of the beam, then the

change in the length of the tendon may be expressed as

(F-FO)L fL fR F-FO dx
—aE - Slet (00 ) F (et ) (0p-0p ) - ¢ J A~ (42)
t
t : 0
Regrouping this equation into a more convenient form,we obtain,
f1, R
(e + —— ) (OL-OLO) + (e + —— ) (QR-ORO)
F =F + (43)
o L
L + 1 dx
A E E A

t t 0

Now, given the loading M(x), the value of the tendon force F may be deter-
mined from Eq. 43; however, even in the simplest case, M(x) = constant,

F cannot be determined explicitly.

L2




b. Example: Terminal Couples - Central Deflection

Returning to the example of a rectangular beam under terminal
couples, M(x) = C, we may now determine the effect of tendon stiffness.
For this very special case the spanwise integrations are very simple and

Eq. 36 and 38 may be expressed as

2
TL
A= 3ET (44)
.. TL
oL =% ¥ 9 =577 (45)

The resultant moment from Eq. 27 becomes

T =C -Fe , for —%—Se +%

(46)
_ 1 d ] C d
T = — [F(e+—2)-C, for ——F->/e+—-—6-—
. C d
Case 1. Before Cracking: <et—¢
Thus
(C - Fe) L
© = ZET — (47)
o
f = fg =0 (48)
L
i = (49)
o o
Insertion of Eq. 47, 48 and 49 into Eq. 42 yields
Ce
where
2 A E
= %4 4 [ + ] 51
Kl = e + 12 1 K:E: (51)



Ll

From Eq. 46
2

T=C(1--§_)-Foe (52)
l .

From Eq. 44, the center deflection is

e2 2
.- [C(I-K—l) - Foe] L 55
8 EI
o
The value of the cracking load, Cc' may be found from
C e
- d, _ C d
CC = FC(e+T) = (F°+—K-;)(9+T)
Thus
F (e + d)
c, = —2—® (54)
e d
1 - Kl (e + z—)
Case 2, After Cracking: —C—> e + d
: & T 2 5
s - TL PP FL
2E " 1gbT3  36bET? a cq° 159
9bE[e +T-—P—,—

_ d c ., _ d C
p TR d-3let o) E-Sletg ) 3T (5

-
n
-~

L
j & = = (57)
d C
Define
= d
KZ = e+ -—-2—-' (58)
- C

Insertion of Eq. 55, 56 and 57 into Eq. 42 and utilizing Eq. 58
and 59 yields




54 e 2

1 + —?— (KZ - ‘V)
1+ (60)
3(K2-v) 3 b(‘Kz-v) E

(Gv - KZ; 1+ AtEt -1

This is the best that can be done algebraically. In order to determine

F = F(C), a plot of F vs. v is made which is subsequently modified to a

plot of F

where the

taneously.

vs. C.

From Eq. 44, the center deflection is

1.2 P P F31.2

5E 18bT®  144bET’  36bE [Fle + -5) - C]

 (61)

corresponding values of F and C must be substituted simul-

Inspection of Eq. 60 reveals some interesting characteristics

of elastic tendons. When v attains a certain value, Vi the denominator

is zero and F has a discontinuity.

3b (Kz-vu) E 3vu -K

2
+ = (62)
A;Et 3(KZ - vu)

Solving Eq. 62 for vy yields

4

AE 2bEK

= tt 2
W K- e VU AR ! (63)
with F = oo implies that C = o and thus Yy is the maximum

value that v attains. The crack penetration is given by

and since v attains a maximu

f = 3v - 3K2 (64)

so does {.

AE
£ =d - tt

max bE -1 (65)
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The implication of Eq. 65 is as follows: When it is assumed that the tendons
have zero stiffness, the cracks will open all the way (f = d) at some finite
load and this permits an infinite deflection at that load. With elastic tendons,
the cracks will never open completely and an infinite deflection can only be

attained with an infinite load.

A numerical example is illustrated in Fig. 21 and 22. Figure 21
illustrates the determination of F vs. C while Fig. 22 compares the result-
ing load deflection curve to the corresponding zero stiffness tendon (F=Fo)
curve. In this example, it is observed that beyond the cracking load, the

elastic tendon makes a significant contribution to the load deflection curve.

c. Numerical Computation Scheme

In order to facilitate the analysis of prestressed segmented beams
with elastic tendons under more complex loadings, a numerical scheme has
been developed for use on a digital computer. Essentially, the numerical
scheme involves nothing more than the evaluation of integrals using
Simpson's 1/3 rule and routines for the determination of the tendon force

and the cracking load.

In this section, the applied bending moment distribution, M(x),

will again be expressed by Eq. 12

M(x) = P g(x) (12)
However, now the load intensity parameter, P, will be chosen such that
g%;x = 1.

i. Determination of Cracking Load

The cracking load, PC , may be expressed as
= 4+ 4
P . =F_(e+ ) (66)

where Fc is the tendon force corresponding to P = PC. For 0P Pc )
everything behaves linearly, see Fig. 23, and F is expressible as a

linear function of P, i.e.,

F = FO + vyP (67)
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Fig.23 GENERAL LOAD DEFLECTION DIAGRAM

Fig.24 SECANT METHOD FOR DETERMINING THE TENDON FORCE
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Let us arbitrarily choose P = P! = Fo (e + %—) and solve Eq. 43 for F',
Having P' and F', y in Eq. 67 may be determined as

FroF
y = ——$— (68)
Fo(e+ z—-)

Eq. 67 now becomes

F=F + (Ezfoy)y P (69)
° ¥y )(e+-%)

Insertion of P = Pc and F = FC into Eq. 69, using Eq. 66, yields the

cracking load

2 d
- *Fo(e'i’—é—) .
c ZFO-F' (70)

d
' . . : el —
where F'is determined from Eq. 43 with P = P' = Fo(e + —-—6—).

ii. Determination of Tendon Force

In general, Eq. 43 represents an implicit relationship between
the tendon force F and the load intensity P. Thus an iterative scheme is

necessary to determine F. One such scheme is the secant method.

Referring to Eq. 43, define
f f

(e + -]Zi) (0, -0, ) + (e+ _IZL)( 0p-9%,)
D = F_ + T - F
NN i
t t
(e}

Thus, given the value of P, the value of F is sought which makes D = 0.

Define T?n to be the nth estimate of the tendon force F and Dn

to be the corresponding value of D. Thus Eq. 71 may be expressed as

D = D (P, _F‘n) (72)




Given -Fn-l » D _, and -Fn » D_, Fig. 24 illustrates how the secant

method is used to determine the following expression for the n+1 estimate.

Fn-l Dn - Fl-an-l
Fn+1 = D .D (73)
n n-1

In order to use Eq. 72 and 73, all that is needed is two initial
guesses: _}:—“1 and -FZ . Once started, the procedure is to merely cycle
back and forth between Eq. 72 and 73 until Dn becomes satisfactorily

small enough,

Figure 23 illustrates that the numerical scheme was programmed
to increment Pby 6P for P > PC. Thus when computing the ""new'
value of the tendon force, F , corresponding to the "'new' load, P ,

new new
the old value of the tendon force, F 4’ is available as a first estimate

ol
of F .
new

Thus, it seems logical to specify Fl and 'F‘Z as follows:

Fl = Fold (74)

FZ ::E_‘I'I'D (75)

These estimates were used in the program and for the lower values of
load the routine worked perfectly. However, for higher values of the
load it became apparent that these estimates were causing Eq. 72 to

yield discontinuous results.

Reflecting back to thé previous section where the example of
terminal couples was investigated, the tendon force was expressed as
a function of the ratio of the terminal couple and itself and that for a
certain value of the ratio, the function was discontinuous. It now seems that
this characteristic is preserved with more complex loadings and thus
in general F is a function of V where V = P/F and F is discontinuous

at V= Vu' See Fig. 25a.
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(A) Fvs.V ILLUSTRATING DISCONTINUITY AT V=V,

FI ___________
Fnew T T T T T
————— |
Fold | {
F I I
0
I l I
|| |
0 | | | —
0 P P P P
. c old new

(B) TENDON FORCE vs. LOAD INTENSITY

Fig.25 GENERAL CHARACTERISTICS OF THE TENDON FORCE
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Thus as the load increases, V approaches Vu and the ratio
Pnew/Fold may exceed Vu , generating erroneous values of D. In order

to prevent the ratio Pnew/Fl from exceeding Vu and to otherwise im-

prove the initial estimate of F , ¥ and T, are chosen as:
. new 1 2
P P
Foz eV = F ( new
1 Vold old pold (76)
E, = ‘F1 + D, (77)

The estimate F1 improves with increasing load since V approaches a
constant with increasing load. Figure 25b illustrates the relative place-

ment of Fold . Fnew and Fl.

iii. Computer Program

A computer program was written which reflects the numerical
scheme developed in this section. Its gross features are illustrated in the
flow diagram shown in Fig. 26. It was convenient to write this program
in such a way,that the loading function g(x) could be isolated. This makes
it possible to effect loading modifications without changing the body of the

program.

The various assumptions made in the general formulation of the
bending problem apply to the computer program. In addition, the program

is further restricted to:

1. Rectangular cross sections

2. Simply supported beams

3. Load systems which produce non-negative bending moments
4.

Tendons which lie in a single horizontal plane.,

d. Properties of Prestressed Segmented Beams

Using the computer program described in the previous section,
it has been possible to quickly investigate some of the important properties

of segmented beams. Certainly, one of their most provocative characteristics
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k=k+1
|
= k
I k=2 Isk $27? <2 y
d
Foz(e+%) ] k>2 P=Fyle+5)
P=—SF—=F — P=P+3P 4
° | Poid = P
I - - ]
= P
F= Fold( Pold)
}
Calc. D, by EQ(71)
]
R=F*0
1
Calc. D, by EQ(71)
i
h=|
Start -
n=n+|
l N
Input:  9(x),F,,E ,E,, £ = Lozt On~ FnOny
Dp=Dp—, A
b,d.e,L,XA.
1
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|
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L ——l— No
Calc. A by EQ (36)
i
End S Is P>Pmax ?
} No
Pold= P
}
Foig = F
L >

Fig.26 OVERALL FLOW DIAGRAM FOR COMPUTER PROGRAM




stems from the possibility of approximating their load-deflection diagram
by one which is elastic-perfectly plastic. This suggests the possibility

of using the methods of limit analysis for segmented structures. We hasten
to point out that the prestressed segmented beam is completely elastic,

and consequently, the unloading curve will differ from that of an elastic-
perfectly plastic beam. Fortunately, however, the upper and lower limit
analysis theorems do not depend on the unloading c.:haracteristics of the

material,

When a simply supported elastic-perfectly plastic beam is sub-
jected to a sufficiently large central load, a plastic hinge forms in the
center. Those portions of the beam away from the center remain practically
undistorted. The similarity between this type of deflection pattern and that
of the corresponding prestressed segmented beam can be inferred from the

deflection curves shown in Fig. 27 for a segmented member.

The influence of tendon eccentricity can be ascertained from the
load-deflection diagrams shown in Fig. 28 for values of e which vary
within the limits of the kern. The stiffness and strength at large deflections
are found to fall off rapidly with decreasing eccentricity. In all of the cases
of zero eccentricity investigated, the influence of tendon stiffness was
found to be extremely slight suggesting that the simpler deflection analysis

using zero stiffness tendons might be appropriate.

Selecting e = 0. 66 where the tendon stiffness is the most pre-
dominant, a series of load-deflection curves were plotted for various ratios
of beam stiffness to tendon stiffness. It appears from Fig. 29 that the
zero stiffness approximation is not appropriate for the extreme values of

eccentricity.

To complete the study of beam parameters, load-deflection
diagrams are shown in Fig. 30 for different values of prestress. The

strength is found to vary linearly with the prestress level,

55




0s0

Wv38 (G3LN3IW93S (Q3SS3YLS3d¥d A30avo
ATIVYIN3D 03LH0ddNS ANdWIS V 404 S3A¥ND NOILD3TJ3a 2261

ov 0 oe

1

Vx

0 0¢

0 ol'o

000

(poo7 bBuIydD04)) "sq| 248 = n_V

I

o p—————

'$q1G602=d~,

'sql €291 un_V

—
e

\
\

e

'sq| L0ge=d

\

88¢ =

QU1 2e200=tv |

U p=p T
uIg=q
UopuR}(3y) |

Wo3q(3y)

15d_01x82 =3

isd ,01x01 = 3

—

sq1 000'21 =%

000

200

+0°0

900

800

oro

2o

14L¢

(saydu1) v ‘uondajyaQ

56




2600

240

2200 "]

©
W
b

2000 //

1800 / ]

1600 <~ |
/ // e= 0
R d “T= P
©
o e=—.\0
. / // // |
—— 1200 ——
// / / e=_'30
1000 / / ///
800 !// / e Fo=8000 Ibs
l / //e=‘-66 E = 10x10°% psi
. E'= 30x|06psi
/ O Cracking Load
600 / A;=0.133 333 in? —
/ W/;! / /| L
———— =20
400 -
(AE)tendon
b=2in
200, d=4in
IV// é L=38in
| ]
-0l o] .0l .02 03 .04 .05 .06 .07 .08 .09 10 Al

Center Deflection, Inches

Fig.28 EFFECT OF TENDON ECCENTRICITY ON THE LOAD- DEFLECTION
CURVES FOR A SIMPLY SUPPORTED CENTRALLY LOADED

PRESTRESSED SEGMENTED BEAM

o7



2600
//
2400 q:=\0
2200 //2:0;300 —
/ %/’_—Q:%
2000 7, ~—
1800
Q- (AE)beom
16001 (AE)tendon
(7
- £ 1400
° /
o
o
|
— 1200
/ F,=8000 Ibs
1000 E = 10x10® psi
/ E'=3OXIO°psi
800
b= 2in
6Q0 d= 4|n
e= 0.66in
400 L=38in
200
=0l [0} Ol .02 .03 .04 .05 06 07 .08 09 40 Al

Center Deflection, Inches

Fig.29 EFFECT OF TENDON STIFFNESS ON THE LOAD DEFLECTION CURVES

FOR A SIMPLY SUPPORTED CENTRALLY LOADED PRESTRESSED
SEGEMENTED BEAM
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CURVES FOR A SIMPLY SUPPORTED CENTRALLY LOADED
PRESTRESSED SEGMENTED BEAM
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3. Relationship Between Theory and Experiments

a. Relationship Between Moment of Inertia and Area

It has previously been indicated that the interface contact area
of a segmented column increases with increasing compressive force. By
comparing the stiffnens of a segmented column to that of an equivalent
monolithic column, we can obtain the effective area of the segmented column
at any load. In the case of a linearly elastic material (Fig. 14), the

effective area at load P is given by
L .
Aeff = 5 (slope of load-deflection curve at P) (78)

where L is the span length or gage length of the column and E is the
modulus of elasticity of the segments. It is important to emphasize that
the actual contact area between any two segments may be higher or lower
than Aeff' That is, Aeff

within the gage length. Since the segments are finite in number, the

averages the effects of all of the contact areas

average real contact area is probably less than Aeff'

The procedure for determining the effective moment of inertia

I of for a prestressed segmented beam parallels that used to find Aeff’
e

that is, we compare the initial stiffness of a segmented beam under a
prestress F and terminal couples to an equivalent monolithic beam. For

a linearly elastic material we obtain,

1 :..._]:‘_

off = OF (initial slope of the terminal couple-end rotation curve) (79)

where L is the span length and where the beam is under a prestressing
force F. As in the case of the segmented column, the actual moment of
inertia at any station of the beam cannot be inferred from I which
averages the effects of many segments. This situation haseff an

important consequence. If the deflection of a beam is very sensitive to

the characteristics of a certain few segments, the beam will exhibit random
behavior. We would, for example, expect to find more variability in the

central deflection of a centrally loaded beam than one subjected to terminal

couples. Because of the shape of the moment diagrams, the central segments
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in the former case have the greater influence on beam deflection.

A necessary condition in the development of a general analysis
capability is the prediction of bending behavior from a knowledge of simple
tension or compression. The first step in satisfying this requirement for
the case of segmented members is to establish the relationship between
Aeff and Ieff' Now, if the contact area is uniformly distributed over the
segment interfaces, the moment of inertia of a rectangular cross section

with n per cent contact is simply

I = — n (80)

where

=)
I
>

P
a

(81)

On the other hand, if the total contact area is confined to the region about

the neutral axis we obtain the minirmum possible moment of inertia, Irm’n

w

I - _bd 3 s
min 1z © (82)

The maximum moment of inertia Ima.x corresponds to the symmetrical
placement of the contact area at the top and bottom of the cross section,

hence,

. _ _bd’
max 12

1 - (1 - n)3} (83)

The types of contact corresponding to 1 and I_. are shown in
max min

Fig. 31 for segments which are partially separated.

Although it is clear that on the average Ieff lies between Imax

and Imin’ it is not evident whether it is equal to the average moment of
inertia I given by Eq. 80, or to the average of the extreme values,

(I + I . )/2, or to some other measure. Experimentally, we can
max min

find the average 1 from either the terminal couple-end rotation curve

eff
of a long segmented beam (many segments), or from the average of the

effective moments of inertia obtained from a number of beams tested under
a general loading. Unfortunately, neither of these tests were scheduled

for this first program phase and any conclusions regarding the relationship
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between A and I must await our future studies.
eff eff

b. Centrally L.oaded Simple Beam Tests

Using the test fixture and the prestressed glass beam shown in

Fig. 32, we obtained central load-central deflection diagrams for pre-

stressing forces of 4, 6, 8 and 12 kips. The results are shown in Fig. 33
through 36. For the 6 kip and 8 kip cases, two separate tests were run to
indicate the scatter which results from removal and reapplication of the
prestressing force. Prior to the performance of these bending tests, the
compressive load-deflection characteri stics of the segments were measured
in situ at the middle and two ends of the member using the technique illus-
trated in Fig. 37. To prevent relative movement between the segments,

the axial load was never completely removed from the member. The
resulting three load-deflection diagrams shown in Fig. 38 are almost
identical indicating that the 10 in or 20 segment gage length is adequate

for estimating the effective area Aeff'

The average Aeff (and hence n ) obtained from the compression

tests described in Fig. 38 have been used to compute 1 and I_ . These
max min

values have in turn been used to define the bounds on the linear portions

of the load-deflection curves in Fig. 33 to 36. Bounds on the load-deflection
curves can be found in the '"cracked'" range if n continues to hold for the
unseparated portions of the cross section. The computer program des-
cribed in Section IV-2-.ciii was modified to reflect the two extreme contact
area distributions shown in Fig. 31 and the resulting extreme load-deflection
curves are plotted with the data in Fig. 33 to 36. It must be pointed out

that these curves are not bounds on the performance of an individual beam;
but rather, they are bounds on the average load-deflection curve of many
beams. As it turns out for the beam considered, all the data falls on or

between these bounds.
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Fig.33 BOUNDED EXPERIMENTAL LOAD-DEFLECTION CURVE FOR A SIMPLY
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c. Interpretation of the Experimental Results

Recognizing that the statistical nature of the interface contact
problem precludes the prediction of the initial bending stiffness of any
particular beam, we proceeded to choose a moment of inertia which matched
up the initial slope of the bending data. Assuming that the contact area is
uniformly distributed over the cross section, matching the 1 is tantamount
to defining the beam width as nb. On this basis we can apply our previous
results in a straightforward manner to obtain theoretical curves for each
level of prestress. The results are shown in Fig. 39 where we observe a
remarkable agreement between the theory and the experiments in the
""cracked" regions. The curves were, of course, choosen to match in the
lincar regions. Consequently inthe range of parameters considered, we
have reduced the prediction of the load-deflection diagram of a prestressed
segmented beam to the determination of the one parameter n. That is, if

I can be related to Ae we have solved the bending problem.

eff ff
In the present series of tests, it was found that the effects of

shear deflection and beam-column action were negligible relative to the

bending deflection. There are, however, practical situations where these

cffects can become quite pronounced.

At this time it is thought that the validity of the present analysis

will improve as:

l. the number of segments increases

2. the prestressing force increases

3. the interfaces become flatter

4. the bending problem more closely approximates

the terminal couple-end rotation case

5. the cross section approaches the ideal I-beam section

d. Calibration and Test Fixtures

Before the bending fixture or the compressometers were used to
measure the properties of segmented members, their reliability was investi-
gated through the use of monolithic steel and aluminum beams and rods.

The fixtures were only accepted when the values of E obtained in bending

and compression were within 2 per cent of cach other and were approximately

T2




equal to the published values.

The prestressing tendons used in the bending experiments were
prestressed and secured with the strand-vice-grips (Reliable Electric
Company) shown in Fig. 40 . The first attempts to measure the tendon
forces were made with strain gages attached to the steel wires. This
method was abandoned because of excessive strain gage slippage and drift.
The eventual use of force washers provided an extremely satisfactory
method of monitoring the tendon force. FEach force washer was calibrated
in a standard jig, and as an additional check, the entire strand was
tensioned using the technique illustrated in Fig. 41. In this way the force
derived from the force washer could be compared directly to that recorded
by the testing machine under the identical conditions which prevailed in

the prestressing assembly.

Optical flats were used to measure the flatness of the segment
interfaces. A monochromatic helium light source was used with a wave-

length of 23.1 x 107 in.
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CALIBRATION CHECK ON THE FORCE WASHER
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V. PRESTRESSED MONOLITHIC BEAMS

A, Conventional Prestressed Design

The usual practice in the design of monolithic prestressed con-
crete is to assume that the concrete has zero tensile strength. The tendon
positions and the associated prestressing forces are selected on this con-
servative basis. Because the tensile strength of many brittle materials is
substantial, we have been motivated in this section to take advantage of this
latent load carrying capacity. Clearly then, our first step must be the
characterization of the tensile strength of the brittle materials to be utilized.
In the following subsection, we indicate that a statistical viewpoint is re-
quired for this purpose, and as a consequence, the general design approach

demands the specification of a desired reliability level.

B. The Probabilistic Nature of Structural Design

The basis for the conventional design of structures is the assump-
tion that there exists a certain failure stress, independent of size, at and
above which all samples will fail and below which none will. Although it is
known that no matcrial exhibits exactly this type of behavior, ductile mat-
erials approximate it well enough to have permitted the evolution of a
deterministic design procedure. Tests on such materials indicate that yield
stresses are distributed very tightly around the mean value-which is taken
to be the failure stress. Now it is obvious that about (in the case of a
symmetrical distribution, exactly) fifty per cent of the samples will yield
below, but very close to, the mean value. There are two approaches taken
to assure that during the life of a structure none of its members are likely
to be stressed beyond their actual yield points. One is the rather obvious
expedient of applying a factor of safety to the observed mean yield stress,
and using the resulting estimate of the failure stress, called the working
stress. The other method is the limit or ultimate design technique. Here
the mean yield stress is used and a factor of safety is applied to the design
loads. This latter approach has gained acceptance in recent years, perhaps
on the grounds that there is considerably more uncertainty about the loads
which will be applied to a structure, particularly, say, a large bridge or

building, during its lifetime than there is about the yield stresses of its
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individual members. Using either approach, if the maximum loads and the
cumulative distribution of yield stresses are known, a reliability can be

computed for a structure. However, this is not done in practice, since the
safety factors are chosen so conservatively that the resulting reliability is

very close to one-hundred per cent.

In the case of brittle materials, the distribution of failure
strengths in tension is one of large variability and, to all appearances,
heavily dependent on the size of the member., As a result of the second
property alone, a simplified design procedure analogous to the one used for
ductile materials is impossible. The most promising scheme seems to be
one in which the distribution of failure stresses is found experimentally and
used to determine the reliability of each member. Thus, the overall reliabi-
lity of the structure under a specified loading condition may be computed.
For example, if a simple frame were composed of three members having
reliabilities of .99, .98, and .95, the frame reliability would be (.99) (. 98)
(.95) = .921.

C. The Statistical Distribution of Fracture Strength

The most popular theory of the fracture of materials leading to
a distribution of fracture stress is due to Griffith. l-é/ Basically it postu-
lates that in a volume of material there are a number of flaws, randomly
distributed, which act as stress concentrators. When the magnified stress
at one of these points reaches the theoretical molecular strength, a running
crack develops and failure occurs. This theory accounts for the fact that
specimens are commonly observed to fail in tension at nominal stresses three
or more orders of magnitude smaller than the molecular bonding strength.
It also implies that the probability of failure at a given stress will increase

with the volume of the specimen since the largest flow in a big volume is

likely to be greater than the largest flaw in a small volume.

Recognizing that the Griffith theory leads to a weakest link model
for the behavior of brittle materials, Weibull 17 expressed a formula for

the probability of failure as a function of the stress distribution in a body:
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F(x):l-exp[ f[fgdéldézdé3] (84)
1 [ x# (56 £3) - %,
g =+ x ;. xgd=x =0
o - u
g =0 ’ XQ{<Xu

where x is an intensity level; x ¢ is the actual stress distribution in the
body; &, &,, &

probability of fracture; and m, x o X, are statistical distribution parametexs.

3 are space coordinates; v is a unit volume; F(x) is the

Weibull's theory has been widely studied as a possible design tool for
brittle materials. Because it represents the general behavior patterns of
such materials, it has been adopted here for purposes of demonstration.
For a stress condition of uniform tension, g{ = ] and the distribution of

failures is given by

X-X
1 -expq -V Xu HED
o u

F(x)
(85)

H

F(x) 0 ; X< X%

where x is the stress level and V is the number of unit volumes in the
member. Figure 42a depicts this distribution of failure stress for 2=m<=o
together with its associated probability density function f(x) = _g_}l; . The
volume has been incorporated into the scale parameter X e The location
parameter x,  may be interpreted as the stress below which no sample

will fail while m may be taken as a measure of the variability of the mater-
ial. As shown in Fig. 42b, as m— oo the behavior approaches that of the

classical material model - all samples fail at exactly the same stress.

For convenience in notation, the integral over the volume, indi-
cated in Eq. (84), is designated as B and called the risk of rupture. Since
F(x) = l-exp (-B), the reliability R = exp (-B). Thus determining the
reliability of the structure can be reduced to two steps. First, finding the
parameters X X and m for the material to be used and, then, evaluating
the definite integral B which is obviously dependent on the type of loading
and the geometry of the member. A considerable amount of work has been
done in both of these areas with mixed success and this work is thoroughly

reviewed in Ref. 18.
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With regard to the definite integral, B , the sole distinction con-
cerning its application hinges on the existence of a solution in closed form
for the loading and geometry to be investigated. As shown previously, the

solution for the case of uniform tension is the trival
m
X-X
B=V ke (86)

X
o)

For other load conditions, such as torsion or flexure, aresort generally
must be made to numerical procedures, thus requiring a computation for
each set of values of X Xy and m. It has been shown howeverl—g—/that for
the special case x, = 0 a great number of closed form solutions do exist
for such regular cross-sections as the rectangular and circular. The diffi-
culty encountered here is, of course, not a theoretical one but simply an
inconvenience in practice. In the interest of brevity and clarity the subse-
quent illustrations of probabilistic design will be restricted to a pure couple
M acting on a rectangular cross-section. Here it is possible to express the

risk of rupture as

4
* [ x, m m+ 1
_ V% v )
B = } — Lbdy =Ty — (87)
o X, X
b~ o
d
U
2xb
where V is the volume of a beam of length L, width b, and depth d; the
maximum fiber stress X, = il\-z/[— is taken as the intensity level x ; ¢ is
bd
taken as 23’ in Eq. (84); and y is the coordinate through the beam depth

measured from the neutral axis. It is easy to check this formula by integrat-
ing the stress gradient, which is constant in the direction of length and width
and varies from zero at the neutral axis to Xy at the outer fiber, over the
half of the beam in tension. It is clear that if a reliability is'specified for a
beam of given dimensions and material, Eq. (87) yields a value of Xy and,
hence, the moment which can be supported. To demonstrate, we cite the

following example.

Find the pure couple M which can be supported with reliability of




95 per cent by a rectangular beam with L = 100", b= 2", d = 4". The

2 ksi,

material used is a ceramic with m = 5, X, = .5 ksi, and X

Since R = exp (-B) = .95 (B = . 05), we may substitute into
formula (87) and find 6
_ (x5 (100 x 4 x 2)
(.05) = —z
x, (2) 2 (6)

Solving for X, we find X, = 1.04 kai.

2
xpPdT (1. 04) (2) (16)
= 5

Thus, M = . 5

= 5.54 in-k.

D. The Prestressing of Brittle Materials

It is well known that the load carrying capacity of beams constructed
with material which is much stronger in compression than in tension can be
increased by introducing a compressive prestress. This is no less true when
the tensile failure stresses are considered to have a probability distribution.
Considering an-axial prestress x_ it is clear that

xd X, "X m

g = —é— < and that for the linear stress gradient we have
© mtl
\' (xb-xp—xu)
considered previously B = 2 1) Thus in bending it is
*b*o

possible to treat an axial prestress as an increage in the paramter Xy
Comparing the moment-carrying capacities of two beams of the same
material, one axially prestressed and the other not (and denoted by primes)
we find that

m+l
- b A\ b "u’'p (88)

We may note that this is by no means the most efficient method of prestress-

ing but it will serve for purposes of illustration. As a matter of fact, it is

easily seen that the most rewarding technique would be to use an eccentricity

such that the outer fiber would have a tensile stress of X, under the prestressing

load.

It is possible by means of Eq. (88) to make a comparison showing
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quantitatively the advantage of prestressing. One can hold the reliabilities,
span lengths, and total weight constant and compute the increased moment
carrying capacity as a function of the prestress. The condition of equal
weight implies that prt') = PVt PV where the subscript. t indicatesd
the prestressing tendon. Since we are comparing beams of equal span
length, pbAi) = pbAb + PtAt' The axial prestressing force must be

equilibrated by the uniform prestress, xp. Using a tendon stress X

Ap¥s Ay Yy 1
- - = , d, —_— = s —_——,
P prb XtAt' Thus At % an A{) v{;_ Ptx
1 4 —2 P
Pr*t

From Eq. (88), the condition of equal reliabilities leads to
m+ 1
1 (xb-xu-xp)

m+ 1

_ (89)
Py (x! - x)

1 +—P b~ *u
Pp*t

Although an algebraic solution for Xy is not generally feasible, for any

given comparison all other terms are known and X, can be found numeri-

cally. But
1 1
X, ) 6M/Abd M Abd So M Xy Abd (90)
xb' EM'?Kb'd' - ! Kbd : MT T xb' Al'adl

The ratio Ab/A{f) is specified by equilibrium; but d/d' is as yet indeterminate.
For our purposes we will make the most conservative choice in reducing the

cross section of the prestressed beam - keeping the width constant. Then since

2
A x
. b _d _ 1 . L _ b 1
b = b, T}')— =g = P . And finally M/M! = xi) P
1+ _____.xp 1+ —L ] (91)
Pr*t Pp*t
c
X, 1 : .
It is apparent that, generally, M/M' = T 5 X , l=c=2, (92)
b 1+ —LP
Pp*t
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where ¢ depends on the way in which the cross section is reduced. The
most efficient method, at least on its face, is to keep the depth constant
and reduce the width. In order to beg the question of lateral stability which
may limit width reductions, we will use a constant width scheme in the

following example:
»
Find the improved moment carrying capacity attainable in the

beam of the previous example by applying a uniform prestress, xp. Let Pp =4

2404 /ft3, P, = 480# /ft3, x, = 200 ksi. Assume that the width of the beam

will be held constant and that the limiting condition will be compressive

failure at xp + x, =x = 200 ksi, which is a reasonable value for the crush-

b ult
ing strength of a ceramic material.

From the previous example we see that x{) = 1.04 ksi. Substi-
tution into Eq. (88) yields
6
~.5-x)
1 b pG,or xb=4l.6 ——-l);-—

— :
p (1.04-.50) b
1+ 56 14 100~

(x

Xy, = (1. 04)

6
(xb- .5- xp)

where xp and X, are in ksi. This equation can be solved for N given
any particular value of x_. Then, corresponding to that value of Xp’ we

can complete M/M' and xp + x The most expedient procedure is to plot

both of these as functions of pr.' Then it is possible to determine, by
inspection, the maximum moment increase permissible by the compressive
strength of the material. Such a plot has been made for this example and is
shown in Fig. 43, On examination of this graph we see that by introducing

a prestress the allowable moment can be increased by a factor of almost 25,

Now, from the design standpoint, we will address the problem of
choosing a cross-section and prestress so as to minimize the total weight
required to support a given moment. We shall consider a beam of rectan-
gular section, with depth, d, and width, b, subjected to. a pure moment, M,
and with a prestressing force, P. Let the cross sectional area of the beam
be denoted by A its density by 2N and those of the tendon by At and Py

We wish to

b ’
The design stress in the tendon will be designated as Xy -
minimize the total weight W , or since the beam is of constant section

throughout its span, L, the function,
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w=W/L=ptA

. +pbA

be

But since P = xtAt = prb ,

Pt
w = bd Pb + ?t—- X o
m+1
Vb (xb-xu-xp)

Tt ) and,

If we rewrite Eq. (87), we see that B =

X, X
b7 o

so, for a given reliability xp can be expressed as a function of Xy But
6M . . . . .
Xy S —> - Hence w is a function only of the depth d. Denoting differenti-
b bd

ation with respect to d by a prime, a turning point can be found by solving

w'(d) = 0,

p
w'(d) = b + -t (x,+dxt)| = 0. (93)

pb e
Solving Eq. (93) for xp we find

2B(m+ l)x:nx m+ ]

*» "% " *u " L bd

b

(94)

Substituting and recognizing that b cannot be zero, we see that the critical

value of d is given by the solution of the equation

m
Pb M m-2 , | 12MB (M+1)x 4-3/(mt 1)

X — = +x + ( ) (95)
t pt bdz u m-1

Lb2

If this is to be a minimum, w'(d) must be positive.

bp
w''(d) = —xt— 2x! +d x'i) and substituting again, we find
t
_1
mym+ 1
wy — PPt 12M . 3(mez) [ 12MB(m-l)xg . m-4
w'(d) = — - + 5 5 d”~ "m+1
t bd (m+1) Lb

Thus when m is greater than or equal to two, the value of d assuredly

corresponds to a minimum. For m less than two a substitution is the
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simplest manner of checking the minimization.

By way of illustration we will now find the minimum weight
design to support the moment which could be carried by the unprestressed

beam of the previous example and compare the weights.

Find the minimum weight design to support, with a reliability of
95 per cent, a moment of 5.54 in-k on a rectangular beam with L = 100",

b = 2", The material to be used is a ceramic with m = 5, x, = 5 ksi,
x_ = 2ksi. Letp, = 2404 /63, p, = 4804 /¢t and x, = 200 ksi.
Substituting in Eq. (95), we find, using r = 1/4,
16.65 % + .548 r'/2 = 99.5.

Hence, r = 2.437=d = .411 in.

So, A, =bd =.822in°=yV_ =82.2in.>
x, = <L = b5:54) <983 ksi
bd®  2(.411)

Substituting in Eq. (94) we find x5 = 96, 6 ksi.

We note as a design check that, since ceramics have compressive
strengths in excess of 200 ksi, we are in no danger of compressive faijlure.

The maximum compressive stress is xy + xp =98.3 + 96,6 = 194.9 ksi.

X
) _ 96.6 .2
At = %, Ab = =00 (.822) = .398 in.
Thus,
=157 240 _ (82.2) = 22.44

We may compare this with the weight of the 2 x 4 x 100 section of the

previous example which could withstand the same load and which is

240

1728)800 111. 1#.

(==>¢
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